

Abstracts

Combined electromagnetic and heat-conduction analysis of rapid rewarming of cryopreserved tissues

Cai-Cheng Lu, Huai-Zhi Li and Dayong Gao. "Combined electromagnetic and heat-conduction analysis of rapid rewarming of cryopreserved tissues." 2000 Transactions on Microwave Theory and Techniques 48.11 (Nov. 2000, Part II [T-MTT] (Special Issue on Medical Application and Biological Effects of RF/Microwaves)): 2185-2190.

A combined solution of an electromagnetic (EM)-wave equation and heat transfer equation is presented to analyze the microwave rewarming process of cryopreserved tissues. The solution process starts with an initial temperature of the tissue. The EM-field distribution inside the tissue is determined first by solving hybrid surface-volume integral equations. This solution provides a thermal source term for the heat-transfer equation. A finite-difference scheme is then applied to solve the heat-transfer equation, which determines the temperature distribution inside the tissue for the next time step. Since the tissue's electrical characteristics (ϵ and σ) are functions of temperature, their values are then updated based on the new temperature distribution. The iteration continues until a termination condition is satisfied. This combined iterative solution of wave equation and heat-transfer equation allows one to model the complex rewarming process. Numerical results are presented to demonstrate the application of the combined analysis approach.

[Return to main document.](#)